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Abstract
Working memory (WM) is the ability to maintain and manipulate information no longer accessible in the environment. The brain
maintains WM representations over delay periods in noisy population-level activation patterns, resulting in variability in WM
representations across items and trials. It is established that participants can introspect aspects of the quality of WM represen-
tations, and that they can accurately compare which of severalWM representations of stimulus features like orientation or color is
better on each trial. However, whether this ability to evaluate and compare the quality of multiple WM representations extends to
spatial WM tasks remains unknown. Here, we employed a memory-guided saccade task to test recall errors for remembered
spatial locations when participants were allowed to choose the most precise representation to report. Participants remembered
either one or two spatial locations over a delay and reported one item’s location with a saccade. On trials with two spatial
locations, participants reported either the spatial location of a randomly cued item, or the location of the stimulus they remem-
bered best. We found a significant improvement in recall error and increase in response time (RT) when participants reported
their best-remembered item compared with trials in which they were randomly cued. These results demonstrate that participants
can accurately introspect the relative quality of neural WM representations for spatial position, consistent with previous obser-
vations for other stimulus features, and support a model of WM coding involving noisy representations across items and trials.
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Introduction

Exploring our modern environment frequently requires mak-
ing decisions based on representations of objects that may not
be directly in view. For example, when driving, it is impossi-
ble to simultaneously view the traffic surrounding us in all
directions—instead, we iteratively sample the environment
by looking through various windows and mirrors, and main-
tain representations of the location(s) of the other cars around
us over these brief interruptions. Sometimes, we are sure we
know the position of a recently viewed car, while other times,
we feel the need to double-check our surroundings. This

highlights the question: How do we know how “good” our
representations of remembered locations are?

Such scenarios require the use of working memory (WM),
which enables the brief maintenance of limited amounts of
information no longer directly in view, and is thought to place
fundamental constraints on cognition (Cowan, 2001; Luck &
Vogel, 2013; Ma et al., 2014). WM is supported by the sus-
tained activity of neural population codes distributed through-
out the brain, including many regions of the cerebral cortex
(Bays, 2015; Christophel et al., 2017; Curtis & Sprague, 2021;
Serences, 2016; Sreenivasan & D’Esposito, 2019). Because
neural population activity is noisy, WM representations
encoded within these activity patterns fluctuate across items
and trials. Indeed, models involving random fluctuations in
the representation of each remembered item outperform those
lacking such variability (van den Berg et al., 2012; van den
Berg et al., 2014). Moreover, participants appear to be sensi-
tive to these random fluctuations: Behavioral measures of re-
call precision track behavioral measures of uncertainty and/or
confidence (Geurts et al., 2022; Honig et al., 2020; Li et al.,
2021; Rademaker et al., 2012; van den Berg et al., 2017;
Vandenbroucke et al., 2014; Yoo et al., 2018), and the quality
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of information represented by neural activation patterns in
visual and parietal cortex correlates with behavioral recall per-
formance and confidence reports on individual trials (Geurts
et al., 2022; H.-H. Li et al., 2021). Altogether, these results
point to a model whereby WM representations of individual
objects are instantiated within noisy neural activity patterns,
and participants “read out” both the represented information
and the uncertainty with which that information is represented
from these neural activity patterns when making WM-guided
decisions. Returning to the driver’s seat of the car: This model
suggests that you are aware of the quality of the neural repre-
sentation of the remembered spatial location and can use this
understanding to guide your next decision.

Beyond accurately introspecting the quality of a single re-
membered item, or one of several remembered items random-
ly cued by the experimenter, participants are additionally able
to infer the relative quality of each of several WM represen-
tations. When participants are allowed to report all items in a
display in an order of their own choosing (Adam et al., 2017;
Adam&Vogel, 2017), or asked to report the item they believe
they can recall most accurately (Fougnie et al., 2012; Suchow
et al., 2017; Williams et al., 2022), behavioral performance is
better for the first-reported item (Adam et al., 2017) or the
best-remembered item (Fougnie et al., 2012; Suchow et al.,
2017; Williams et al., 2022). These studies offer convincing
evidence that participants can monitor and use the relative
quality of multiple WM representations when guiding deci-
sions. However, these studies focused on representations of
stimulus features such as color, orientation, or shape, and have
used stimulus arrays in which each remembered item is pre-
sented at a different location. When objects occupy disjoint
locations, this may allow for independent neural codes (i.e.,
nonoverlapping pools of neurons) to represent the feature(s) of
each independent item, and thus, for the “quality” of each item
to be assayed based on the relative quality of each independent
neural code (Geurts et al., 2022; H.-H. Li et al., 2021). Instead,
when multiple spatial positions must be maintained, if spatial-
ly selective (i.e., retinotopic) neural populations encode those
positions, it is then necessarily the case that multiple feature
values (positions) are encoded in the same population as dis-
tinct hills or bumps of activity. In such a scenario, an alterna-
tive readout strategy which incorporates the simultaneous rep-
resentations of multiple items would be necessary. Thus, it
remains unknown whether participants can similarly intro-
spect the relative quality of multiple WM representations for
spatial position. Based on previous findings that participants
can accurately report the quality of a single remembered spa-
tial WM representation (H.-H. Li et al., 2021), or one of sev-
eral spatial WM representations that is randomly cued (Yoo
et al., 2018), and that participants can accurately decide which
of several feature WM representations is best-remembered
(Adam et al., 2017; Fougnie et al., 2012; Suchow et al.,
2017; Williams et al., 2022), we predicted that participants

would similarly be able to decide which of several remem-
bered spatial locations they could report most accurately.
Instead, if it is impossible to accurately compare the relative
quality of multiple spatial representations encoded within the
same pool of neurons, then we would expect participants can-
not improve their performance when allowed to decide which
location to report. Additionally, the previous studies establish-
ing that participants can compare the quality of multiple WM
representations have been unable to measure RTs, which offer
a useful opportunity to establish differences in decision pro-
cesses between WM task conditions (Pearson et al., 2014;
Schneegans & Bays, 2016, 2018). If participants must directly
compare their judgments of eachWM representation’s quality
before deciding which to report, we would expect longer RTs
when participants make a decision about which item to report
as compared with trials in which they are randomly cued.
Instead, if participants are able to immediately report the
stronger of the two representations without a direct compari-
son process, RTs would be faster when the best item could be
reported.

Here, we tested whether participants can correctly intuit the
best of several spatial WM representations on a trial-by-trial
basis by employing a memory-guided saccade task which
allowed us to precisely characterize both the accuracy of
memory reports and response time on each trial. Participants
remembered the location of either one or two objects on each
trial, and reported one location with a saccadic eye movement
after a delay period. Critically, on trials requiring participants
to remember two items, participants either reported one item
that was randomly cued, or they reported the item they be-
lieved they could report most accurately. To summarize our
results, when participants could report their best item, recall
error was lower and response times were slower than on trials
in which they reported a cued item. Further analyses sug-
gested it was unlikely that participants were adopting a strat-
egy in which they reported locations that they could, on aver-
age, recall more precisely, suggesting that their judgments of
the best-remembered item were based on trial-by-trial fluctu-
ations in the quality of eachWM representation. These results
support a model in which WM representations of multiple
spatial positions fluctuate trial by trial, and demonstrate that
participants can read out and compare the quality of each
representation when making WM-guided decisions.

Methods

Participants

We recruited 21 healthy adult human participants, including
one of the authors (n = 20; female = 17; Mage = 23.33 years,
SDage = 2.63), to participate in the experiment for either mon-
etary compensation or course credit ($10/hr or 1 credit/hr).
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The Institutional Review Board at University of California
Santa Barbara approved all human subjects procedures. Prior
to participation in the study, all participants provided written
informed consent. All participants reported normal or
corrected-to-normal vision and were 18 years of age or older.
The data from one participant were removed from analysis
because they could not complete the experiment due to tech-
nical difficulty acquiring eye tracking data, so the final dataset
includes n = 20 participants. The sample size was determined
based on previous reports using similar methods (e.g.,
continuous report tasks; Fougnie et al., 2012, n = 10, 700
trials per condition; Suchow et al., 2017, n = 12, 200 trials
per condition), which reported an effect size of dz = 0.84 and
0.55, respectively, for a similar comparison (paired t test be-
tween a randomly cued and best-remembered condition). We
aimed to detect an effect size of at least dz = 0.70 with 80%
power, which required a sample size of n = 19, which we
rounded up to n = 20.

Design and procedures

This study investigated whether participants are aware of the
relative quality of their spatial WM representations using a
memory-guided saccade task (Funahashi et al., 1989; H.-H.
Li et al., 2021). The study tested three conditions (Fig. 1). In
the Remember 1 (R1) condition, participants remembered a
single position over a delay period and reported its location
with a saccadic eye movement. The other two conditions both
contained two targets, each presented in a different color. In
the Remember 2–randomly cued (R2-random) condition, the
participant was asked to recall the location of one of the tar-
gets, randomly chosen on each trial. For the Remember 2–best

remembered (R2-best) condition, the participant was asked to
recall the location of one of the targets that they thought they
remembered the best.

Each ~5-min run contained 30 trials, with 10 trials per
condition, randomly interleaved. Following a previous report,
we aimed to acquire ~200 trials per condition (Suchow et al.,
2017), which required a minimum of 20 behavioral runs
(range: 20 to 34, mean 22.5) split over multiple 1-hr behav-
ioral testing sessions. All participants were exposed to all con-
ditions of interest (repeated-measures design).

On each trial, either one or two targets, each a small dot
presented in a different color, appeared in a random location
on the screen within a large gray circular aperture for 500 ms
(Fig. 1). Participants remembered the location of all target
dot(s) presented over a subsequent 3.5-s delay period
(similar to Funahashi et al., 1989), Then, a cue appeared at
the center of the screen at the fixation point, instructing the
participant to report the location of one of the remembered
stimuli. On trials with two remembered positions (66% of
trials), the cue either matched the color of one of the two
targets, indicating the participant must report the location of
the cued target (R2-random condition), or, it was white, indi-
cating the participant should report the location they felt they
remembered most precisely (R2-best condition). For example,
if a trial had two targets (e.g., blue and purple), the cue would
be one of the two colors, or it would be white. To report the
remembered location of the cued target, participants made a
saccade to the remembered location. Participants had 1.5 s to
make their response. Then, target dots were re-presented at the
remembered location(s) for 800 ms. During these 800 ms,
participants fixated the location of the reported target dot.
After the dots were removed from view, participants returned

Fig. 1 Task design. Participants were instructed to remember the location
of one or two colored dots presented at random location(s) on an invisible
ring 12° from fixation while maintaining fixation at a fixation point at the
center of a large circular aperture. After a 3.5-s delay, participants made a
memory-guided saccade towards a remembered location in one of three
conditions. On “Remember 1” (R1) trials, the fixation response cue al-
ways matched the color of the remembered dot, and participants reported
that location. On “Remember 2–randomly cued” (R2-random) trials, the
fixation response cue matched one of the two dot colors, and participants

reported the location of the dot with the matching color. On “Remember
2–best remembered” (R2-best) trials, the fixation response cue became
white, and participants reported the location of the target they felt they
could recall most precisely. After 1.5 s, the target location(s) were re-
presented, and participants fixated the reported target dot before returning
to fixation. Cartoon schematic shown (not drawn to scale); see Methods
for specifics of stimulus display parameters. Dashed yellow line indicates
a cartoon depiction of gaze trajectory (not shown to participants). All
stimuli presented within a gray circular aperture. (Color figure online)
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their gaze to the central fixation point and waited for the next
trial to begin after a randomly chosen intertrial interval (2 to 4
s). We provided no behavioral feedback at the end of each run.

Stimuli and apparatus

Participants performed the task in a dark room with an exper-
imenter seated behind them actively monitoring their eye
movements using the eye-tracking control computer through-
out the session. We presented stimuli on a 25-in. Dell
S2417DG LCD display (2,560 × 1,440 resolution; 30-cm
height; 120-Hz refresh rate), which participants viewed from
a chinrest located 56 cm away. All experimental equipment
was mounted on an adjustable-height table which was raised/
lowered for each participant to minimize head and neck strain.

For all sessions, we used an EyeLink 1000 Plus infrared
eye tracker (SR Research) placed beneath the computer
screen. The camera always tracked the participant’s right eye
at 1000 Hz. We calibrated with a 13-point calibration routine
at the beginning of each run. Throughout the experiment, an
experimenter monitored gaze data and adjusted pupil/corneal
reflection detection parameters as necessary.

The stimuli were colorful dots (0.65° radius) presented on
an invisible ring that had a 12° radius from a central fixation
mark. Each dot was randomly assigned a location on each
trial, and the color of the dot was randomly chosen from red
(RGB: 200, 0, 0; 14.49 cd/m2), yellow (RGB: 130, 130, 0;
31.79 cd/m2), blue (RGB: 0, 0, 255; 7.22 cd/m2), and purple
(RGB: 180, 0, 180; 15.70 cd/m2). The locations were
constrained so that in the two targets conditions the dots were
always separated by at least 30° polar angle. Throughout all
the trials, a gray fixation point (radius 0.3°) was presented in
the center of the screen, which was filled by a circular aperture
(15° dva radius) on a black background to minimize any
biases induced by the edges of the rectangular stimulus dis-
play monitor. We presented stimuli and communicated with
the eye tracker using MATLAB and the Psychophysics
Toolbox (Version 3.0.15; Pelli, 1997).

Gaze data processing

The main dependent variables in the current study were recall
error derived from response error (i.e., the Euclidean distance
between target location and endpoint of the final saccade) and
response time (i.e., the time between response cue onset to the
beginning of initial saccade). We extracted these variables
using automated eye-tracking data preprocessing and process-
ing routines conducted offline after the experimental session
similar to those reported previously (Hallenbeck et al., 2021;
H.-H. Li et al., 2021; github.com/tommysprague/iEye_ts).
These procedures include removing blinks, adjusting drift
over each run, recalibrating raw gaze data trial by trial,
identifying memory-guided saccades, and automatically

excluding trials with poor data or participant noncompliance.
We implemented fully automated procedures blind to trial
conditions to minimize experimenter bias. We qualitatively
evaluated the efficacy of the below-described automated pre/
processing steps blind to experimental conditions of each trial
before conducting our primary analyses.

Specifically, blinks were defined as samples within 200 ms
before and after pupil size fell below the 1.5th percentile of the
distribution across pupil size samples from a run. Velocity was
computed based on smoothed gaze time courses (5-ms stan-
dard deviation Gaussian kernel). Saccades were defined based
on a velocity threshold of 30°/s, duration threshold of 0.0075
s, and amplitude threshold of 0.25°. Periods between saccades
were defined as fixations. Drift correction for each trial was
based on the modal fixation position from the trial period
before the go cue. For recalibrating raw gaze data on each
trial, we used the closest fixation to the target position during
the 800 ms period after the target was re-presented. Then, we
fit a third-order polynomial for each coordinate (x, y) to match
the actual WM position of the nearest target and the measured
gaze coordinate. Finally, we used this polynomial to recali-
brate the gaze traces across trials in each run. Only trials with a
fixation within 2.5° of a target stimulus were used for fitting
the polynomial.

After preprocessing and automatically identifying sac-
cades/fixations, we then automatically labeled the “initial”
and “final” saccades (and their resulting endpoints) for each
trial. The initial saccade was defined as the first large saccadic
eye movement towards the target position (>5° amplitude,
<150-ms saccade duration). The final saccade was defined
as the last saccade before the target stimuli reappeared at the
end of the trial. If the participant made no corrective sac-
cade(s) after the initial saccade during a trial, the initial sac-
cade and final saccade would be identical. We defined RT
based on the onset of the initial saccade following the response
cue and final saccade error as the Euclidean distance between
the final saccade endpoint and the reported target. On R1 trials
and R2-random trials, we computed the distance to the cued
target location. On R2-best trials, we computed the distance to
the target nearest to the location participants fixated when the
targets were re-presented.

We implemented blinded and automated trial exclusion
criteria to ensure results reflect trials which could be confi-
dently quantified using our automated procedures.We exclud-
ed trials based on these criteria: (1) fixation failure (the partic-
ipant broke fixation beyond a 2.5° radius window around
fixation during the target presentation or delay epochs), (2)
initial saccade with RT faster than 100 ms or slower than 1
s, or (3) no initial saccade was detected (no saccade >5° am-
plitude) or the initial saccade was erroneous (endpoint >5°
from any target). This automated exclusion procedure resulted
in excluding between 1.5 and 55% of trials per participant
(mean ± SEM: 17 ± 3.04%). For five participants (sub002,
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sub006, sub009, sub014, and sub021), more than 20% of trials
were excluded. When we repeated all analyses excluding
these participants, our results remained the same.
Importantly, the proportion of included trials did not reliably
differ across the critical R2-random and R2-best task condi-
tions (paired t test of proportion of trials included per subject),
t(19) = −0.468, p = .645, dz = −0.105. Interestingly, when
directly comparing each R2 condition to the R1 condition,
there were more trials included for the R2 conditions: R1 vs.
R2-random, t(19) = −2.85, p = .01, dz = −0.637; R1 vs. R2-
best, t(19) = −3.22, p = .005, dz = −0.720, despite the greater
difficulty associated with larger set size. Altogether, this sug-
gests that our primary results cannot be well-explained by
different numbers of included trials between the conditions.

Data analysis and statistical procedures

For the primary analyses of RT and recall error, we computed
the average initial saccade RT and average Euclidean response
error across all included trials within each condition per par-
ticipant, then subjected these values to inferential statistical
tests (one-way repeated-measures analysis of variance
[ANOVA] with follow-up pairwise t tests as necessary; Fig.
3). For the primary analysis comparing final saccade recall
error across conditions (Fig. 3a), we additionally computed a
measure of precision based on the variability of the saccade
endpoint distribution tangential to the target location. We
aligned the final saccade endpoint across all trials within each
condition by circularly rotating the endpoint around fixation
such that the reported target was located at (12°, 0°). Then, we
computed the standard deviation of the y coordinate of these
aligned response endpoints for each condition and participant
and subjected these values to the same inferential tests de-
scribed above.

To evaluate each of several heuristic strategies, we com-
puted correlations between two variables (see Results; Fig. 4)
for each participant, then performed a one-sample t test on the
sample of Fisher r-to-z transformed correlation values across
participants against the null hypothesis of a zero correlation
(two-tailed).

Results

In the current study, participants performed a memory-guided
saccade task which required them to precisely remember the
location of one or two colored dots on each trial (Fig. 1). On
two thirds of the trials, participants were instructed to report
one remembered location (on R1 trials, there was only one
location that could be cued; on R2-random trials, the fixation
point changed color to match one of the dots; participants
reported the matching dot’s location). On the remaining one
third of the trials (R2-best trials), the fixation point turned

white during the response period, which instructed partici-
pants to choose the dot location that they believed they re-
membered the best to report.

Qualitatively, participants accurately reported the remem-
bered location with quick and ballistic saccadic eye move-
ments (Fig. 2a). Comparing all trials from an example partic-
ipant across the three conditions, saccades towards the target
were large in amplitude (Fig. 2b), which was typical across
our sample of participants. Moreover, examining these sac-
cade amplitude traces, it is apparent that the onset of the initial
ballistic saccadic eye movement after the response cue was
fastest when a single item was remembered, slower when two
items were remembered and a single item was cued, and
slowest when the participant was required to choose the best
remembered item to report. Finally, comparing the spatial dis-
tribution of saccadic endpoints between conditions for this
example participant (Fig. 2c) suggests that they can most pre-
cisely report the location of a single item (R1), especially
when compared wi th the R2-random condi t ion .
Interestingly, when they are allowed to choose which of two
locations to report, the spatial recall error is qualitatively
smaller (lower spatial spread of data points) than when one
of two locations is randomly cued (Fig. 2c). Data from this
example participant illustrate the effectiveness of our automat-
ed scoring and trial exclusion procedures (see Methods: gaze
data processing). All trials included in subsequent analyses
exhibit the typical time course of memory-guided saccades,
with a large-amplitude initial saccade towards the remem-
bered location followed typically by one or more corrective
saccades.

To quantitatively test whether participants can introspect
which of several spatial WM representations they can report
most accurately, we compared WM recall error (mean
Euclidean error of final saccade endpoint) and RT (onset of
initial saccade) across conditions using repeated-measures
one-way ANOVAs. First, we found a main effect of condition
on memory-guided saccade recall error (Fig. 3a; absolute
error), F(2, 38) = 19.605, p < .001, ηp

2 = 0.51. Follow-up
paired t tests showed that performance was more precise in
the R1 condition than both of the R2 conditions: R1 vs. R2-
random, t(19) = −5.247, p < .001, dz = 1.173; R1 vs. R2-best,
t(19) = −3.281, p = .004, dz = 0.734. Importantly, a direct
comparison between R2-random and R2-best trials revealed
a significant difference in recall error: R2-random vs. R2-best,
t(19) = 3.685, p = .002; dz = 0.824. The result was consistent
with our prediction that participants can introspect the relative
quality of multiple spatial WM representations, similar to pre-
vious observations using feature values like color and orien-
tation. We also repeated these analyses using an alternative
measure of precision (standard deviation of the tangential sac-
cade endpoint distribution; see Methods), and these results
were unchanged: the same pattern was found in the mean
difference of recall precision between conditions. F(2, 38) =
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Fig. 2 Behavioral results from an example participant. a Eye position
traces following response cue for all trials from an example run (30
trials) from an example participant. Line color denotes condition (see
b). Red dots indicate remembered target locations. Black ring is drawn
at 12° eccentricity, and was not presented during the experiment. b Time
course of gaze position (eccentricity) for all trials for an example partic-
ipant, sorted by condition. On all trials which pass objective and blinded
trial inclusion criteria, a rapid and ballistic saccade occurs shortly after the
response cue. Qualitatively, saccades occur earliest for R1 trials, latest for

R2-best trials, and at intermediate latencies for R2-random trials. c
Saccade endpoints across all trials for an example participant, sorted by
condition and aligned to remembered target location (black +). Endpoints
are rotated around fixation to align the reported target location to the right
of fixation (relative fixation location indicated by black circle).
Behavioral reports are most precise on R1 trials and least precise on
R2-random trials (consistent with the commonly-observed set size effect).
Recall error is qualitatively improved on R2-best trials compared with
R2-random trials

Fig. 3 Participants are more accurate and slower to respond when
reporting the best-remembered item. a We quantified recall error as the
average Euclidean distance between the final saccade endpoint and the
remembered target position (see Methods). Recall was most accurate
when participants remembered a single location (R1), and dropped sub-
stantially when they remembered two locations and were randomly cued
(R2-random). However, recall improved when participants reported the

best-remembered item (R2-best). b Response times, measured based on
the onset of the first saccade after the response cue (see Methods), were
fastest on R1 trials and slower on R2-random trials. On R2-best trials,
performance was slower still, suggesting the process of introspecting the
relative quality of both WM representations takes additional time. * indi-
cates significant difference, paired t test, p < .05 (see text). Error bars
show SEM. (Color figure online)
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29.5625, p < .0001; ηp
2 = .61. Planned contrasts revealed that

all pairwise comparisons were significant: R1 vs. R2-random,
t(19) = −7.875, p < .001, dz = 1.761; R1 vs. R2-best, t(19) =
−3.611, p = .002, dz = 0.807; R2-random vs. R2-best, t(19) =
3.982, p = .001, dz = 0.890. In addition to comparing final
saccade endpoints, we also tested whether the primary saccade
endpoint error (the distance between the remembered location
and the location fixated after the first ballistic saccade towards
the reported location) differed across task conditions. The results
were qualitatively consistent with those shown in Fig. 3a, al-
though the difference between the R2-random and R2-best con-
ditions was not significant, t(19) = 2.071, p = .052, dz = 0.463.

Second, we also found a main effect of condition on
memory-guided saccade response time (Fig. 3b), F(2, 38) =
74.902, p < .001, ηp

2 = 0.80. RT was fastest in the R1 condi-
tion, slowest in the R2-best condition, and intermediate in the
R2-random condition. Planned pairwise contrasts revealed
that all contrasts were significant: R1 vs. R2-random, t(19) =
−6.762, p < .001, dz = 1.512; R1 vs. R2-best, t(19) = −9.939,
p < .001, dz = 2.222; R2-random vs. R2-best, t(19) = −7.494,
p < .001, dz = 1.676. The longer RT in the R2-best condition
compared with the R2-random condition converges with our
prediction that participants need extra time to assess the rela-
tive quality of each object’s representation before making a
decision about which one to report, and rules out the possibil-
ity that the strongest WM representation can immediately be
recalled more quickly on R2-best trials.

We also compared the average number of saccades made
by participants in generating their response. We counted the
number of saccades generated including the ballistic primary
saccade towards the remembered position before the feedback
cue appeared. There was no systematic deviation in the mean
number of saccades across conditions (one-way repeated-
measures ANOVA), F(2, 38) = 0.672, p = .516, ηp

2 = 0.034.
This suggests that participants were not making finer-grained
oculomotor adjustments on any condition compared with the
others, and rules out a possible trade-off between faster RTs
(time before primary saccade) and increased amount of adjust-
ment (greater number of corrective saccades).

Ruling out alternative explanations

These results are consistent with our prediction that partici-
pants can monitor the quality of multiple WM representations
and use the relative quality of those representations to guide
behavior. However, it could be the case that participants are
instead implementing heuristic strategies that do not involve
monitoring trial-by-trial fluctuations in each WM representa-
tion. For example, each participant may have an area of the
screen that they believe they can remember more precisely. If
this belief is accurate, and if participants employ a strategy
whereby they report the item closest to their “best-

performing” location(s) on the screen on R2-best trials, it is
possible to observe results like those shown in Fig. 3a.

To test this possibility, we reasoned that we could use the
R1 condition to characterize which location(s) were best re-
membered for each participant. If, on the R2-best condition,
participants default to reporting the locations they believe they
can remember the best (rather than evaluating the relative
quality of each representation on a trial-by-trial basis), we
would expect they are more likely to choose to report the
location that is better remembered, on average, on R1 trials.
For each participant, we first plotted the average recall error
for R1 trials sorted into 12 equally spaced position bins (Fig.
4a). For some participants (e.g., sub001), there was essentially
no variation across location bins, while for other participants
(e.g., sub016), there was a greater amount of variability. Then,
for each location bin, we computed the proportion of R2-best
trials in which participants reported the location within that
bin. If, for example, a participant remembered one location bin
extremely precisely compared with all others, and this knowl-
edge alone was driving their choice of which item to report on
R2-best trials, then we would expect the probability of choos-
ing that location would be high, and the probability of choos-
ing other locations would be lower. When we directly plotted
the probability of choosing a location within a bin on R2-best
trials against the average recall error for the corresponding bin
on R1 trials (Fig. 4b), we observed substantial variability
across participants. For some participants, this heuristic does
seem to be employed (e.g., sub001), such that the participant’s
“choice” is predicted by their average recall error on R1 trials.
However, for other participants, this result is not observed
(e.g., sub016). Note that because we use entirely separate data
to compute the recall error for each location bin and to com-
pute the likelihood of choosing an itemwithin that bin, there is
no possible circularity in the analysis procedure.

To quantify whether this heuristic is employed, on average,
across our participant sample, we computed a correlation for
each participant between error from R1 trials and best remem-
bered probability across the 12 location bins. If best-
remembered location bins are more likely to be chosen, we
would expect to see a negative correlation on average.
However, across our sample, there was no reliable difference
in these correlation coefficients from zero (Fig. 4c; one-
sample t test of Fisher r-to-z transformed correlation coeffi-
cients between R1 and best remembered probability against
zero), t(19) = 0.05, p = .96, dz = 0.012; same test based on
correlation between R2-random and best remembered proba-
bility: t(19) = 0.22, p = .83, dz = 0.05. Thus, while it may be
the case that a small number of participants may, in part, adopt
a location-based heuristic to report their best-remembered
item, this appears to be rare, and does not account for the
overall results across our sample. Finally, to ensure that a
subset of participants exhibiting strong negative correlations
(e.g., sub001 in Fig. 4b) did not drive the primary results
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shown in Fig. 3, we repeated the analyses in Fig. 3 after ex-
cluding data from the five participants with the most negative
correlation in Fig. 4c (based on sorting trials using both R1
and R2-random binned recall errors) and the results remain
unchanged (data not shown).

Discussion

We investigated whether participants can directly compare the
relative quality of multiple spatial WM representations to sup-
port improved behavioral performance on a memory-guided
saccade task (Figs. 1 and 2). When participants remembered
two locations, they reported one location more accurately
when they were allowed to choose which item they could
report the best compared with when they were cued to report
one item’s location at random (Fig. 3a). Moreover, RTs were
longest when participants were required to choose their best

item to report (Fig. 3b), suggesting the involvement of a time-
consuming process for comparing each item’s representation
quality. Finally, we ruled out the possibility that participants
only use a location-based heuristic to report their best-
remembered item, because, on these trials, participants were
not more likely to report the location(s) on the screen they
could most accurately recall based on their performance on
cued trials (Fig. 4). Altogether, these results support a model
of WM whereby noisy neural population codes for multiple
items encode information about the relative “quality” of each
item’s representation, and this information can be read out and
compared when engaging in WM-guided behavior.

Previous studies have established that increasing WM load
decreases recall precision for remembered stimulus features
like color (Adam et al., 2017; Adam & Vogel, 2017; Bays
et al., 2009; Wilken & Ma, 2004; Zhang & Luck, 2008),
orientation (Adam et al., 2017; Bays & Husain, 2008;
Gorgoraptis et al., 2011), shape (A. Y. Li et al., 2022), motion

Fig. 4 Participants did not employ a location-based heuristic on R2-best
trials. We tested the possibility that participants are aware that they can
report some locations better than others on average, but do not introspect
the quality of their trial-by-trial WM representations by directly compar-
ing the recall error on R1 or R2-random trials within each of 12 location
bins to the likelihood that a target within that bin would be ‘chosen’ in
R2-best trials. a For each participant (two example participants shown),
we sorted trials into 12 equally spaced location bins (see inset; lower
right) and computed average recall error for all trials within each bin. b
For each participant, we plotted the likelihood that they would report a
target if it was presented in each location bin on R2-best trials against the

recall error on R1 trials plotted in (a). If all screen locations are treated
equally, there should be no correlation between R1 recall error and the
likelihood of reporting each location. However, if participants frequently
choose targets within a location bin for which they have low recall error
on R1 trials, this correlation would be negative. Correlation values (ρ)
appear on each participant’s figure. c Correlations between R2-best: pro-
portion location chosen and R1: Recall error (left) or R2-random: Recall
error (right) across location bins (as in b) across all participants in our
sample. While some participants do show negative correlations (e.g.,
sub001, panel b), this is not true on average across our sample. Error bars
show SEM. (Color figure online)
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direction (Emrich et al., 2013; Zokaei et al., 2011), and spatial
position (Bays & Husain, 2008; Ester et al., 2018; Sprague
et al., 2014, 2016; reviewed in Bays, 2015; Luck & Vogel,
2013; Ma et al., 2014). Our study using a memory-guided
saccade task (Fig. 1) replicates this general finding: on trials
where participants were randomly-cued to report one of two
remembered locations, they responded with greater recall er-
ror than when they only remembered a single location (Fig.
3a; see also Schneegans & Bays, 2018). A key advantage of
the memory-guided saccade task is that we could simulta-
neously achieve a continuous report of remembered location
and response time on each trial. Our results replicate previous
spatial recall studies measuring RTs for motor actions (finger
pointing: Schneegans & Bays, 2016; memory-guided sac-
cade: Schneegans & Bays, 2018) that manipulated set size:
responses were slower when two items were remembered
and one was randomly cued than when only a single item
was remembered (Fig. 3b).

Our observation that participants can performmore accurately
when asked to report the location of their best-remembered item
when compared with a randomly cued item (Fig. 3) replicates
and extends previous observations that participants can compare
multiple WM representations of colored circles (Adam et al.,
2017; Fougnie et al., 2012; Suchow et al., 2017; Williams
et al., 2022), oriented lines (Adam et al., 2017), and cartoon
cubes (Suchow et al., 2017). These previous studies are all con-
sistent with amodel ofWMwhereby each item is encodedwith a
random level of precision (e.g., “variable precision”models; van
den Berg et al., 2012), and so these results support a similar
model for spatialWM representations. This is an important dem-
onstration because spatial WM tasks are commonly used in the
animal physiology and computational modeling literature for
probing the neural mechanisms supporting WM (Compte et al.,
2000; Curtis & Sprague, 2021; Funahashi et al., 1989;
Schneegans & Bays, 2016, 2018), and because deficits in spatial
WM are observed in patients with schizophrenia (Cannon et al.,
2005; Matthews et al., 2014; Zhao et al., 2021).

Evaluating the quality of WM representations

Previous studies aiming to directly relate the accuracy of WM
reports, confidence reports, and/or the quality of neural repre-
sentations measured with neuroimaging techniques have pri-
marily focused on tasks requiring reporting a single item. For
example, Rademaker et al. (2012) required participants to re-
member the orientation of several gratings over a short delay
interval before reproducing the remembered orientation of a
randomly cued grating and giving a confidence rating. Trials
with better confidence reports were those with more accurate
performance on the orientation reproduction task, establishing
that participants can accurately report the quality of single
WM representations. Similar results are observed for a single
remembered location (H.-H. Li et al., 2021), a single cued

location among multiple items (Yoo et al., 2018), and a single
cued color among multiple items (Honig et al., 2020).
Moreover, a pair of recent fMRI studies have established a
link between the quality of decoded neural representations
from areas of visual and parietal cortex and reports of memory
uncertainty for spatial location (H.-H. Li et al., 2021) and
grating orientation (Geurts et al., 2022). Both of these studies
observed a trial-by-trial correlation between a model-based
measure of uncertainty of the decoded neural representation
and a behavioral report of memory uncertainty, supporting a
model whereby observers are directly reading out the quality
of their neural representations when making an evaluative
judgment of a single WM representation.

These results together are consistent with a model in which
all WM representations are random on individual trials due to
noise in their neural codes, and participants can read out the
quality of an individual cued WM representation and perform
comparative judgments across all WM representations.
Importantly, our finding that performance is reliably slower
on R2-best trials compared with R2-random trials (Fig. 3b)
suggests a cost to this comparative judgment, and renders
unlikely the possibility that participants report the strongest
representation because it is the first representation that “comes
to mind” during recall. If the strength of the WM representa-
tion reliably covaried with RT such that faster responses were
associated with stronger representations (e.g., Schneegans &
Bays, 2016, 2018), then we would expect our RTs to follow a
similar pattern to the response errors shown in Fig. 3a: fastest
for R1 trials, slowest for R2-random trials, and intermediate
for R2-best trials. This is because, if the two items on R2 trials
randomly and independently vary in their strength across tri-
als, then reporting the strongest one (R2-best) should, on av-
erage, result in faster responses than randomly reporting either
the stronger or weaker one (R2-random). If it were possible to
sort R2-random trials based on an estimate of a given trial’s
WM representation quality, we would expect that R2-random
trials probing the better-remembered item would have faster
RTs than those probing the worse-remembered item.
Additionally, it could be the case that a color cue at fixation
requires an additional level of retrieval (mapping color to
position; Schneegans & Bays, 2017) that is unnecessary on
R2-best trials, in which the participant in principle could have
forgotten color information altogether. Instead, it seems that
the longer RTs on R2-best trials compared with R2-random
trials index a comparative decision process whereby partici-
pants evaluate the quality of each WM item’s representation,
compare them, and report the best of the two. Future studies
involving whole report tasks (e.g., Adam et al., 2017; Adam&
Vogel, 2017) and behavioral confidence reports (e.g., Honig
et al., 2020; Li et al., 2021) along with single-trial readouts of
the relative quality of multiple WM representations (H.-H. Li
et al., 2021; Sprague et al., 2014, 2016) will help better dis-
entangle the cognitive processes supporting these decisions.
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Role of location-based strategies

It has been established that, for features like orientation and
color, there exist idiosyncrasies in memory report precision as
a function of feature value, such that some colors or orienta-
tions can be reported more precisely than others (Bae et al.,
2014; Pratte et al., 2017). Perhaps our result is due to our
participants adopting a heuristic whereby they choose to re-
port targets from a preferred location or location(s) in the R2-
best condition based on their knowledge that they generally
can perform better at location recall for items presented at
those locations. We pursued this possibility based on some
participants reporting to us after the experiment that they
seemed to perform better for targets presented (for example)
on the left side of the screen compared with the right side.
Therefore, we computed the participant's accuracy by location
from the R1 condition and compared this with the probability
they chose to report an item within that bin during the R2-best
condition (Fig. 4a–b). If participants did have better represen-
tations in some locations than others, their recall performance
should vary substantially for locations at different positions on
the screen. Indeed, some participants did show fluctuation in
performance at different locations (see example participant
data; Fig. 4a), and, in the R2-best condition, some participants
did seem to choose some locations to report more than others
(Fig. 4b). However, it was rare that the locations chosen were
those that could be reported most precisely on R1 trials (cher-
ry-picked example shown in Fig. 4b; see Fig. 4c for all par-
ticipants). Across our sample of participants, this heuristic
could not explain our main result that behavioral performance
was improved on R2-best compared with R2-random trials
(Fig. 3a). Thus, participants appear to be using information
beyond their knowledge of which location(s) on the screen
they can remember most accurately when deciding which lo-
cation to report on R2-best trials, such as the relative quality of
their neural code for each item’s location.

Implications for neural population coding

Modern theories of neural coding posit that information is
maintained via activity patterns over populations of neurons.
For example, the activity pattern across a population of neu-
rons in primary visual cortex accurately encodes the orienta-
tion of an oriented grating which can be decoded using a
variety of machine learning methods (Berens et al., 2012;
Stringer et al., 2021; Walker et al., 2020). Theoretical (Ma
et al., 2006) and empirical (Geurts et al., 2022; Li et al.,
2021; van Bergen et al., 2015; Walker et al., 2020) studies
have supported the notion that neural population codes addi-
tionally (and implicitly) encode the “quality” or “uncertainty”
of a representation. Rather than separately keeping track of the
feature value represented by a neural population and its uncer-
tainty, both of these types of information are simultaneously

encoded in a probability distribution carried by the neural
activity pattern. Extensions of this theory to fMRI responses
measured in humans have confirmed that participants use
these types of uncertainty representations to make judgments
about single oriented gratings (Geurts et al., 2022; van Bergen
et al., 2015; van Bergen & Jehee, 2019) and spatial positions
(H.-H. Li et al., 2021).

The previous behavioral studies testing whether participants
can directly compare the quality of multiple WM representa-
tions in order to report their best-remembered item (Adam et al.,
2017; Fougnie et al., 2012; Suchow et al., 2017;Williams et al.,
2022) all allowed participants to compare feature
representations from different spatial locations. This means that
the population code being compared was localized to the
retinotopic location for each item (e.g., in Suchow et al.,
2017, participants could “look at” the activity profile for neu-
rons with spatial receptive fields corresponding to the screen
location of each remembered item, extract the associated uncer-
tainty from these independent populations, and compare these
values). However, for spatial locations, such a straightforward
processing workflow over disjoint WM representations is not
possible. The population that encodes spatial location(s) is nec-
essarily distributed across an entire retinotopic cortical region
(and, indeed, may span several of these retinotopic regions
across visual, parietal, and frontal cortex; Curtis & Sprague,
2021; Li et al., 2021; Sprague et al., 2014).

For a retinotopic neural population with spatial tuning pro-
files tiling visual space to simultaneously encode two spatial
positions, there must be two “bumps” of activity, each cen-
tered at the location of one item. Simple instantaneous readout
rules like computing a vector average based on each neuron’s
preferred position cannot easily recover each item’s indepen-
dent position. Instead, the population representation must be
“read out” using a strategy that jointly considers the position
of multiple objects. This is in direct contrast to scenarios
where separate neural populations each encode a feature rep-
resentation that can be extracted based on their retinotopic
locations and compared. Thus, while our result is consistent
with previous findings that participants can directly compare
the quality of multiple WM representations (Adam et al.,
2017; Fougnie et al., 2012; Suchow et al., 2017; Williams
et al., 2022), it suggests that this comparison is supported by
a more complex type of readout from the population code.
Future studies parametrically varying aspects of the task de-
sign, including trial-by-trial manipulations of whether location
or feature value is reported (e.g., Schneegans & Bays, 2017),
may help further clarify how neural codes jointly maintain
representations of information and representations of uncer-
tainty for multiple items.
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